
fig.2 Attribute editor and Render Layer
Override Options.

Luminance Depth DOF and Alpha

 In this tutorial I will present a Depth of Field solution using Mayas luminance depth method.
Also, I will present a solution to any surfaces that have an alpha and need to accurately render depth
behind them.

 First let's start by setting up our depth of field. If
there are no transparent objects in your scene, it's as
easy as adding all your objects to a new render layer
(fig.1). Name the layer something appropriate, i.e.
DOF_Luminance_Depth_Pass.
You do not need to add any lights to the layer as this
render pass is generated by a surface shader.

After you created the layer, go to your attribute editor
(fig.2) and select the newly created layer and selecting
Luminance Depth in the presets.
This will create a surface shader and assign it to your
objects by overriding any incoming shader connections.
Because this is an override, you cannot assign another
shader to these objects on that layer.
Now you can render out a depth pass and use it in post to
simulate depth of field.

fig.1 Render Layer Options.

fig.3 Connection Editor

fig.4 Connections diagram

 In order to have more than one shader in your render layer, you will need to follow one of two paths.
The first method is to create a luminance depth pass with the method described above, then take the
same objects, assign them to a new render layer and manually assign the shading network from your
hypershade. After that, you can delete the first layer.
The other way is to create the shader from scratch.
If you chose to go that route, you will need a samplerInfo node, a multiplyDivide node, a setRange node
and a surface shader.

 First, middle mouse drag and drop the samplerInfo onto the multiplyDivide. Chose other as the type
of connection you wish to make. This will bring up your Connection Editor (fig.3).

Now, follow the connections in (fig.4) and (table 1) to create the shader.

table.1 Connections

fig.5 Transparency issues with surface

shaders and DOF.

samplerInfo.pointCamera multiplyDivide.input1X

multiplyDivide.outputX setRange.valueX

samplerInfo.cameraNearClipPlane
samplerInfo.cameraFarClipPlane

setRange.oldMinX
setRange.oldMaxX

setRange.outValueX surfaceShader.outColorR
surfaceShader.outColorG
surfaceShader.outColorB

You will notice that (table.1) has two more connections than the diagram. By default these connections
are made so that your entire scene fits onto the DOF radius. Personally I prefer to have control over my
DOF falloff and set these values manually.

 Now, some problems arise when
there are objects with alpha, such as
foliage, hair, torn cloth etc.
If you use the luminance depth
solution the way it was described
above you will get something like in
(fig.5).

The best way around this and the real
purpose of this tutorial is to substitute
the shader you want to have
transparency with a Lambert. Create
and assign the surface shader to
everything that does not have an
alpha, then create a Lambert shader
and assign the setRange node
outValueX to the color RGB channels.

fig.6 A DOF solution with a surface shader

and a Lambert to handle transparent

objects.

fig.7 Corrected DOF render.

As a last step you will need to set the ambient color value to white, effectively turning the Lambert to a
surface shader (fig.6).

If you apply the Lambert to the correct
surfaces your render will now look like
(fig.7).

As a side note, you will need to create as
many Lambert shaders as you have
different alpha maps.

